Карточки по математике, 3 класс

Содержание:

Случаи деления 80 : 20, 87 : 29

Начнем с деления на двузначное число.

Приемы деления вида 87 : 29

Найдите значения двух выражений:

Для решения посмотрите на цифры единиц. Делитель заканчивается на 9. Вспомните таблицу умножения девяти. Какое произведение имеет семерку на конце? 27.

Других вариантов в таблице умножения на девять нет. Ответ равен трем.

Внимательно посмотрите на цифры в единицах. Делимое заканчивается на четверку. Вспомните множитель, который при умножении шести в произведении дает последнюю цифру четверку.

Это два случая: четыре, девять. В значениях произведений четверка на конце. Какой множитель подходит? Давайте посмотрим. Девять — многовато.

Задания легко решать, если знаешь таблицу умножения.

Деление столбиком на двузначное число

Вы уже знаете, что для записи действия деления применяют математический символ в виде двоеточия (∶), обелюса (÷), дробной (–), косой (∕) черты. Сегодня мы используем знак, который похож на лежащую боком букву.

При делении столбиком очень важна аккуратность, поэтому возьмите листок в клеточку.

Как записать решение примера 32 : 16 столбиком? Запишите каждую цифру делимого 32 в отдельную клеточку. Отступите одну клеточку вправо, запишите делитель 16. Проведите вертикальную и горизонтальную черточку.

Подбираем частное. Посмотрите на цифры единиц 2 и 6. Вспомните табличные случаи.

Семерка нам не подойдет, потому что 16 ∙ 7 — это большая величина. Значит, выбираем двойку. Проверяем: 16 ∙ 2 = 32. Записываем двойку на место частного под чертой. Вычитаем 32 из делимого. Пишем нуль. 32 разделили нацело.

Хорошо. А знаете ли вы, что с древних времён замечено влияние грецкого ореха на работу мозга. Как будто природа создала его, по форме извилин напоминающим полушария головного мозга. Благодаря работе этого центрального органа мы справляемся с математическими задачами.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное с при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток d будет вычисляться по формуле:

d = a − b * c

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

  • найти модули делимого и делителя;
  • разделить по модулю;
  • записать противоположное данному число и вычесть 1;
  • использовать формулу для остатка d = a − b * c.

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Как решаем:

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, c = −4, тогда:

d = a − b * c = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Пример с умножением

Одна из самых трудных тем, с которой сталкивается 3 класс, — деление с остатком. Примеры могут быть сложными, особенно когда требуются дополнительные расчеты, записываемые в столбик.

Допустим, необходимо разделить число 190 на 27 с получением минимального остатка. Попробуем решить задачу, пользуясь умножением.

Подберем число, которое при умножении будет давать цифру, максимально приближенную к числу 190. Если умножить 27 на 6, получим цифру 162. Вычтем из 190 число 162, остаток будет 28. Он получился больше, чем исходный делитель. Следовательно, число шесть не подходит для нашего примера в качестве множителя. Продолжим решение примера, взяв для умножения число 7.

Умножая 27 на 7, мы получим произведение 189. Далее проведем проверку правильности решения, для этого вычтем из 190 полученный результат, то есть отнимем число 189. Остатком будет 1, что явно меньше 27. Именно так решаются сложные выражения в школе (3 класс, деление с остатком). Примеры всегда предусматривают запись ответа. Все математическое выражение можно оформить так: 190:27=7 (остаток 1). Подобные вычисления можно производить и в столбик.

Именно так осуществляет 3 класс деление с остатком. Примеры, приведенные выше, помогут разобраться в алгоритме решения подобных задач.

Признаки делимости

Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:

  1. V — делимое, т. е. число, которое требуется разделить.
  2. T — математики называют его делителем.
  3. P — частное является числовым результатом, который будет получаться при делении двух величин.

Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.

Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):

  1. 0: операция невозможна, поскольку превращает все выражение в пустое множество.
  2. 1: делятся все значения.
  3. 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
  4. 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
  5. 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
  6. 5: последней цифрой является 0 или 5.
  7. 6: деление на составные части, т. е. на 2 и 3.
  8. 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
  9. 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
  10. 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.

Примеры на деление шестизначного числа на однозначное с остатком с ответами:

Те же самые примеры на деление одного числа на другое с остатком, что приведены выше, но с ответами для быстрой проверки решений.

601437 : 4 = 150359 остаток 1235020 : 9 = 26113 остаток 3860201 : 5 = 172040 остаток 1570269 : 9 = 63363 остаток 2501313 : 8 = 62664 остаток 1136454 : 5 = 27290 остаток 4296597 : 2 = 148298 остаток 1528699 : 4 = 132174 остаток 3969134 : 3 = 323044 остаток 2276726 : 4 = 69181 остаток 2186209 : 7 = 26601 остаток 2924787 : 4 = 231196 остаток 3242573 : 5 = 48514 остаток 3921195 : 6 = 153532 остаток 3960366 : 8 = 120045 остаток 6149615 : 7 = 21373 остаток 4241617 : 8 = 30202 остаток 1591155 : 2 = 295577 остаток 1879664 : 9 = 97740 остаток 4958827 : 6 = 159804 остаток 3471949 : 2 = 235974 остаток 1212201 : 8 = 26525 остаток 1867223 : 5 = 173444 остаток 3449956 : 9 = 49995 остаток 1851357 : 4 = 212839 остаток 1 937096 : 3 = 312365 остаток 1164030 : 9 = 18225 остаток 5390330 : 8 = 48791 остаток 2427326 : 7 = 61046 остаток 4617795 : 3 = 205931 остаток 2176088 : 7 = 25155 остаток 3266656 : 7 = 38093 остаток 5469844 : 8 = 58730 остаток 4937667 : 8 = 117208 остаток 3427144 : 9 = 47460 остаток 4615608 : 5 = 123121 остаток 3687186 : 4 = 171796 остаток 2331623 : 8 = 41452 остаток 7415937 : 2 = 207968 остаток 1194004 : 5 = 38800 остаток 4555323 : 3 = 185107 остаток 2419903 : 9 = 46655 остаток 8776114 : 6 = 129352 остаток 2680122 : 9 = 75569 остаток 1560862 : 7 = 80123 остаток 1532318 : 7 = 76045 остаток 3822523 : 2 = 411261 остаток 1628411 : 5 = 125682 остаток 1469636 : 6 = 78272 остаток 4721705 : 2 = 360852 остаток 1

Сгенерировано примеров на деление шестизначного числа на однозначное с остатком с ответами в качестве тренажера по математике: 50

Скачать

Распечатать

На этой странице сайта результат работы генератора случайных примеров по математике на деление шестизначного числа на однозначное с остатком для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.

Тренировочные примеры по математике на деление шестизначного числа на однозначное с остатком для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.

Математические примеры на деление шестизначного числа на однозначное с остатком, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.

Задания на деление шестизначного числа на однозначное с остатком, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.

Описание

Программа «Задание на неделю 3 класс» формирует задачи и примеры, которые помогают закрепить ребенку все знания, полученные во третьем классе в течение года, а также подготовится к проверочной и контрольной работе.

На листе формата А4 формируется 13 заданий по математике. При этом задания даются в небольшом объеме, но с максимальным охватом всех типов примеров. Это позволяет детям быстро вспомнить материал 3 класса.

В каждую карточку входят следующие виды заданий:

  • задание на повторение понятий «слагаемое», «сумма», «уменьшаемое», «вычитаемое», «разность», «множитель», «произведение», «делимое», «делитель» и «частное» с вычислениями;
  • примеры на сложение, вычитание, умножение и деление, в том числе: логические (вставить знаки для получения верного равенства),
  • выражения на порядок действий (от пяти действий со скобками);
  • примеры на умножение и деление разных типов: умножение и деление круглых чисел, внетабличное умножение и деление;
  • примеры на деление с остатком с вычисление частного, уменьшаемого или вычитаемого;
  • решение уравнений;
  • задание на сравнение дробей (долей) и нахождение части от числа;
  • задания на повторение единиц измерения длины, массы и времени;
  • примеры в столбик: сложение трехзначных чисел, вычитание трехзначных чисел, умножение двухзначного числа на однозначное, умножение трехзначного числа на однозначное и двузначное, на однозначное число;
  • примеры на нахождение сторон, периметра и площади квадрата и прямоугольника;
  • простые задачи на движение: нахождение скорости, времени или расстояния.

Программа «Задание на неделю 3 класс» написана в Excel с помощью макросов. Данные генерируются случайным образом, что позволяет получить более тысячи вариантов заданий для 3 класса, карточки заданий не повторяются.

Для ознакомления с программой можно скачать изображение карточки, которая получилась с помощью программы. Для получения новой карточки математического диктанта достаточно скачать, нажать на кнопку и распечатать.

Другие программы, которые помогут закрепить навыки счета:

  • Цепочки примеров в пределах 1000 (все действия)
  • Числовые пирамиды большие (в пределах 50,100 и больше)
  • Умножение и деление по типам (табличное, внетабличное, круглых чисел)
  • Сложение и вычитание в столбик
  • Умножение и деление в столбик
  • Деление с остатком на число (с выбором уровня сложности)
  • Порядок действий в пределах 1000 (все действия)
  • Сложные примеры на порядок действий
  • Выражения с именованными числами

Примеры на деление четырехзначного числа на однозначное с остатком с ответами:

Те же самые примеры на деление одного числа на другое с остатком, что приведены выше, но с ответами для быстрой проверки решений.

3167 : 5 = 633 остаток 24301 : 4 = 1075 остаток 19507 : 7 = 1358 остаток 17667 : 9 = 851 остаток 86985 : 6 = 1164 остаток 18853 : 9 = 983 остаток 64538 : 4 = 1134 остаток 28310 : 9 = 923 остаток 34886 : 8 = 610 остаток 69155 : 2 = 4577 остаток 13810 : 9 = 423 остаток 38177 : 3 = 2725 остаток 28822 : 5 = 1764 остаток 28685 : 6 = 1447 остаток 33596 : 8 = 449 остаток 48563 : 3 = 2854 остаток 15436 : 8 = 679 остаток 43766 : 3 = 1255 остаток 14461 : 4 = 1115 остаток 11785 : 9 = 198 остаток 34141 : 7 = 591 остаток 43287 : 3 = 1095 остаток 29226 : 5 = 1845 остаток 14096 : 5 = 819 остаток 18534 : 4 = 2133 остаток 2 2755 : 2 = 1377 остаток 15556 : 7 = 793 остаток 54307 : 4 = 1076 остаток 31787 : 4 = 446 остаток 33246 : 9 = 360 остаток 64748 : 9 = 527 остаток 57616 : 5 = 1523 остаток 14613 : 5 = 922 остаток 36779 : 2 = 3389 остаток 15469 : 2 = 2734 остаток 12551 : 8 = 318 остаток 74120 : 9 = 457 остаток 74111 : 2 = 2055 остаток 16653 : 2 = 3326 остаток 17953 : 6 = 1325 остаток 36157 : 5 = 1231 остаток 23311 : 8 = 413 остаток 71067 : 7 = 152 остаток 36990 : 9 = 776 остаток 69481 : 4 = 2370 остаток 13661 : 3 = 1220 остаток 18730 : 7 = 1247 остаток 17682 : 6 = 1280 остаток 27762 : 3 = 2587 остаток 19747 : 6 = 1624 остаток 3

Сгенерировано примеров на деление четырехзначного числа на однозначное с остатком с ответами в качестве тренажера по математике: 50

Скачать

Распечатать

На этой странице сайта результат работы генератора случайных примеров по математике на деление четырехзначного числа на однозначное с остатком для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.

Тренировочные примеры по математике на деление четырехзначного числа на однозначное с остатком для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.

Математические примеры на деление четырехзначного числа на однозначное с остатком, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.

Задания на деление четырехзначного числа на однозначное с остатком, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.

Деление с остатком целых положительных чисел

Деление — это разбиение целого на равные части.

Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Самый удобный способ деления — это столбик.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Как решаем:

Выполним деление столбиком:

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Карточка 2

Сосчитай, записывая примеры в столбик.

32+49 37-16
46+24 70-48
83+8 53-38
38+32 45-8

Сосчитай, записывая примеры в столбик.

80-67 45+14
93-48 38+47
59-42 75+8
36-9 68+27

Сосчитай, записывая примеры в столбик.

46+37 80-38
22+58 93-56
59+9 75-9
64+27 87-32

Карточка 7

В летний лагерь приехали дети на двух автобусах. В первом автобусе было 46 детей, а во втором — на 8 детей меньше. Сколько всего детей приехало в школьный лагерь?

3∙7 2∙9 5∙3 9∙0
20:4 70:10 8∙10 32:4
27:3 21:7 7∙4 8∙3
c∙4=12 6∙c=18 27:c=3
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5

Найди значение выражения, решая по действиям.

60-(8∙3)+(4∙7)

Найди значение выражения, решая по действиям.

70-(7∙3)+(8∙4)

Найди значение выражения, решая по действиям.

64-(27+14)+(6∙4)

Найди значение выражения, решая по действиям.

60-(8∙3)+(4∙7)

Найди значение выражения, решая по действиям.

38+(6∙3)-(4∙7)

Карточка 20

На зиму мама закрыла 4 банки вишнёвого варенья, а малинового — в 3 раза больше. Сколько банок малинового варенья закрыла мама? Сколько всего банок закрыла мама на зиму?

Карточка 21

В первый день маляр покрасил 5 скамеек, а во второй — в 4 раза больше. Сколько скамеек покрасил маляр во второй день? Сколько всего скамеек покрасил маляр за два дня?

Карточка 22

Пятачок за неделю съел 3 баночки мёда, в Винни-Пух — в 3 раза больше. Сколько баночек мёда съел Винни-Пух? Сколько баночек мёда они съели вместе?

Карточка 23

Перед домом посадили 4 ели, а берёз — в 3 раза больше. Сколько посадили берёз? Сколько всего деревьев посадили перед домом?

Карточка 24

Денис нарисовал 16 флажков, а Дима — в 4 раза меньше. Сколько флажков нарисовал Дима? Сколько всего флажков нарисовали мальчики?

Карточка 25

Алёна придумала 12 загадок, а Максим — в 2 раза меньше. Сколько загадок придумал Максим? Сколько всего загадок придумали оба мальчика?

Карточка 26

Мастер за день изготовил 24 детали, а его ученик — в 3 раза меньше. Сколько деталей изготовил ученик? Сколько всего деталей они изготовили вместе?

Карточка 28

На первом острове живёт 32 индейца, а на втором — в 4 раза меньше. Сколько индейцев живёт на втором острове? Сколько всего индейцев на двух островах?

Карточка 29

В куске было 54 метра ткани. Из этой ткани сшили 8 курток, расходуя по 3 метра на каждую. Сколько метров ткани осталось в куске?

В театре ученики первого класса заняли в партере 2 ряда по 9 мест и еще 13 мест в амфитеатре. Сколько всего мест заняли ученики первого класса?

Актовый зал освещает 6 люстр по 8 лампочек в каждой, да еще 7 лам­почек над сценой. Сколько всего лампочек освещает актовый зал?

К празднику купили 4 набора шариков по 10 штук в каждом наборе. Лопнули 12 шариков. Сколько шариков осталось на празднике?

В 3 одинаковых наборах 18 карандашей. Сколько карандашей будет в 7 таких наборах?

Начерти таблицу и реши задачу.

Для изготовления 5 одинаковых конструкторов потребовалось 35 деталей. Сколько деталей нужно для изготовления 8 таких конструкторов?

Начерти таблицу и реши задачу.

Крупу разложили на 6 одинаковых упаковок общей массой 12 кг. Сколько упаковок получится из 20 кг?

Начерти таблицу и реши задачу.

В 3 банки для засолки разложили 12 кг помидоров. Сколько банок потребуется для засолки 32 кг помидоров?

Начерти таблицу и реши задачу.

На 32р. купили 4 тетради. Сколько тетрадей можно купить на 56 рублей? на 16 рублей?

Начерти таблицу и реши задачу.

В 2 ведра помещается 16 кг картофеля. Сколько вёдер нужно, чтобы разложить 24 кг картофеля?

Начерти таблицу и реши задачу.

В 4 наборах 32 листа цветной бумаги. Сколько наборов составляют 72 листа бумаги?

Начерти таблицу и реши задачу.

  • Начерти прямоугольник со сторонами 8 см и 4 см. Найди его площадь и периметр.
  • Сравни:
12 смc1см2мм 7 мc74 дм 9 ммc1 см
14 смc1дм4см 8см7ммc90 мм 100 смc1 м
  • Начерти прямоугольник со сторонами 5 см и 4 см. Найди его площадь и периметр.
  • Сравни:
14 смc1см4мм 9 мc94 дм 9 ммc1 см
18 смc1дм8см 6см7ммc70 мм 10 смc1 дм

Расставь знаки «+», «-», «·», «: » так, чтобы равенства стали верными.

26*6*7=13 2*2*4=0
7*9*2=18 8*9*2=70
9*9*2=20 8*4*2=30
9*2*2=16 40*5*7=56

Из 12 м ткани портной сшил 6 одинаковых костюмов. Сколько метров ткани потребуется на 10 таких костюмов? на 7 костюмов?

Начерти таблицу и реши задачу.

В огороде собрали 24 кг моркови, редиса — в 4 раза меньше, чем моркови, а чеснока — в 5 раз больше, чем редиса. Сколько килограммов чеснока собрали?

Из 15 м тюля сшили 5 одинаковых занавесок. Сколько таких занавесок можно сшить из 21 м тюля? Сколько понадобится тюля, чтобы сшить 9 таких занавесок?

Начерти таблицу и реши задачу.

Как научиться делить столбиком

Деление столбиком с остатком и без него нельзя начинать без подготовки. Сначала ребенок должен хорошо уметь и знать следующее:

  • Разряды натуральных чисел (десятки, сотни, тысячи). Находить их в ряду многозначных цифр.
  • Таблица умножения. Этот материал лучше выучить наизусть и постоянно повторять.
  • Отнимать, складывать не только однозначные или двузначные, но и многозначные числа.
  • Решать маленькие задачи на умножение, разность, сумму устно.

Отработайте все обозначенные умения до автоматизма. Затем приступайте к делению маленьких цифр на примере таблицы умножения в уме. Например, ребенок выучил, как умножать цифру 6:

6х2=12

6х3=18

6х4=24 и так далее.

Смело предлагайте такие примеры:

24:6=4

24:4=6

12:2=6

18:3=6

Через пару уроков школьник будет выполнять такие задания легко. Можно разнообразить занятия по устному счету играми на деление.

Игровые задания

Интересные математические игры на деление без остатка помогают детям закрепить навык, узнать законы работы с цифрами, освоить устный счет.

  • Головоломки на развитие внимания. Напишите в тетради 3–5 примеров на деление с ответами.

    Все, кроме одного, должны быть решены неверно. Нужно быстро найти тот пример, который содержит правильный ответ. Затем исправить остальные примеры с помощью устного счета.

  • Подбор примера по результату. Предлагайте малышу ответ без примера. Давайте задание придумать задачу. Например, ответ 8. Ребенок может придумать такую задачу: 48:6.
  • «Идем в магазин». Расставьте на полу игрушки с карточками. На листах написаны примеры: 6:2, 18:3, 42:7, 100:50. Игрушки — это «товар» в фантазийном магазине, частное после решения примера на карточке — их цена. Чтобы узнать стоимость покупки, нужно решить задания, а потом оплатить полученный результат в кассу. Играть лучше в небольшой команде — 2–3 человека.
  • «Молчуны». Ребенок получает карточки с цифрами от 1 до 100. Задавайте вопросы с примерами на деление, ученик должен отвечать без слов, показывая правильный ответ.
  • Небольшие самостоятельные работы с подарком за старательность. Распечатайте карточки с примерами в количестве 5–10 штук. Укажите время на решение, например 5 минут. Поставьте перед ребенком песочные часы. После выполнения контрольной верно поощрите школьника походом в зоопарк, кино, покупкой книги, сладостей. Такой тренажёр хорошо стимулирует детей.
  • «Ищем дерево».

    Нарисуйте небольшой сад с деревьями на картоне. Каждому растению дайте номер, пусть их будет 10. На листочке для ученика напишите 3 примера:

45:9           120:60          14:7

Школьник должен вычислять результат к каждому заданию, а потом складывать все числа между собой. Получится так:

45:9=5

120:60=2

14:7=2

5+2+2=9

Ребенок должен найти дерево под номером 9.

Для игры можно использовать цветные пуговицы и ставить их на занятые деревья. Развлечение подходит для командных соревнований.

После устной работы с делением натуральных чисел можно показать ребенку порядок записи примеров столбиком. Если педагогического опыта у вас нет и вы не знаете, как объяснить ребёнку процесс деления столбиком, то посмотрите видеоурок на эту тему, вспомните теорию сами.

Теперь можно приступать к объяснению сложного материала школьнику. Есть несколько методик домашнего обучения делению:

1. Мама-учитель

Родителям придется ненадолго стать педагогами. Оборудовать доску, купить мел или маркеры. Заранее вспомнить школьный материал по теме “деление уголком”. Объяснить пошагово теорию и закрепить ее на практике с помощью большого количества самостоятельных, карточек, контрольных работ.

Например, это:

Затем нужно обсуждать с малышом материал, закреплять навык на практике несколько недель.

3. Нанять репетитора

Деление (даже трёхзначных чисел на двузначные) не самая сложная тема в школьной программе. В начальных классах можно легко обойтись без платных уроков с педагогом.

Этот вариант оставим на крайний случай.

Описание

Примеры на деление с остатком сами по себе не сложные, но они требуют концентрации и внимания, особенно для очень торопливых детей. Практика счета таких примеров поможет развить внимательность и закрепить навыки счета больших чисел, а также добиться автоматизированного счета.

Программа представляет собой тренажер для решения примеров на деление с остатком. В результате нужно найти частное от деления и остаток, делимое или делитель.

Вид задания и уровень сложности:

  1. Примеры на деление с остатком в пределах 100 или в пределах 1000:Печатается 2 столбика по 20 примеров: в первом столбике нужно найти частное от деления и остаток;во втором столбике нужно найти делимое или делитель.
  2. Цепочки примеров в пределах 100 или в пределах 1000:Делимое следующего примера рассчитывается как делитель * остаток от деления + частное предыдущего примера (Пример: 86 : 4 = 21 (ост.2); Делимое следующего примера = 4 * 2 + 21 = 29). В этом случае проверка каждого примера не требуется, достаточно сверить итоговый ответ.

Программа счета написана в Excel с помощью макросов. С помощью генератора примеров можно создать и распечатать готовые карточки с примерами на деление с остатком для детей разного возраста и уровня подготовки: деление на однозначное, двузначное и трехзначное числа. Поэтому карточки с примерами подойдут как для детей начальной школы (3 и 4 класс), так и для детей более старшего возраста.

Формируются примеры на листе формата А4. Примеры генерируются случайным образом, количество генераций не ограничено. В конце карточки формируются ответы на примеры, которые после печати карточки можно отрезать. Нумерация карточек и ответов позволяет быстро находить ответы к каждой карточке, даже если их напечатано много.

Для ознакомления с программой можно бесплатно скачать примеры на деление с остатком, которые получаются при использовании программы. Для получения новой карточки примеров достаточно скачать, нажать на кнопку генерации и распечатать.

Другие программы, которые помогут закрепить навыки счета:

    • Деление с остатком на число (с выбором уровня сложности)
    • Умножение и деление по типам (табличное, внетабличное, круглых чисел)
    • Сложение и вычитание в столбик
    • Умножение в столбик
    • Деление в столбик
    • Умножение и деление в столбик
    • Порядок действий в пределах 1000 (все действия)
    • Сложные примеры на порядок действий
    • Выражения с именованными числами

На сайте представлен каталог программ, в котором все программы распределены по группам с указанием различий в программах внутри каждой группы. С помощью каталога Вы можете выбрать те программы, которые подходят именно Вам.

Решение задач на деление с остатком

Простые задачи легко решить, если составить модель-схему условия и решения задачи на числовом луче.

Рассмотрите пример задачи:

Повар испек 17 творожных и 19 брусничных ватрушек. На тарелки положит по три штуки одного сорта. Узнайте, сколько нужно тарелок и сколько ватрушек останется.

Решение:

Ответ: для творожных ватрушек нужно 5 тарелок, две останутся; для брусничных — 5 тарелок, одна ватрушка останется.

Составьте задачу на деление с остатком, выбрав подходящее выражение:

Проверьте рассуждение. Для задачи подойдет второе выражение, а первое и последнее – не подходят, потому что это табличные случаи.

Пример задачи: На пальто пришивается 4 пуговицы. На сколько таких пальто хватит 15 пуговиц? Сколько пуговиц останется?

Ответ: пуговиц хватит на три пальто. Останется 3 пуговицы.

Придумайте задачу к схеме:

Мама купила 21 конфету и поделила по 8 штук детям. Сколько детей в семье и сколько конфет мама оставила себе?

Решение:

21 : 8 = 2 (ост.5)

Ответ: в семье двое детей. Мама оставила 5 конфет.

Умения решать задачи по математике помогают в жизни.

Подсказка: решить задачу можно округлив величины. 90 – это девять десятков, а 28 округлим до трех десятков.

Проверьте:

Ответ: Незнайка купит 3 стаканчика с мороженным. У него останется 6 рублей.

Итоговая административная контрольная работа

Вариант 1

1. Вычисли

75:5=     203*4=       34:5=

33:3=     900:30=     213:7=

23*4=   760:4=       305:10=

2.Выполни вычисления в столбик

345+276=   818:3=

610-345=     134*4=

3. Реши задачу

В магазине было 115 белых гвоздик и 68 красных. Из них сделали букеты по 3 гвоздики в каждом. Сколько букетов получилось.

4.Задача

Ширина прямоугольника 6 см, а длина на 2 см больше. Найди его периметр и площадь.

5. Сравни, поставь знаки > <, =

1 кг…532г                    5м 2дм… 25 дм

1 сут. … 23 ч                 3дм² …200 см²

6 дм 3 см…630 мм       3 ч … 120 мин

Вариант 2

1. Вычисли

105:7=       305*5=         53:7=

66:6=         100:50=       243:8=

28*4=         960:4=         405:10=

2.Выполни вычисления в столбик

438+178=   714:3=

712-333=   258:3=

3. Реши задачу

С одной грядки собрали 345 кг моркови, а с другой 258 кг. Всю морковь разложили в мешки по 9 кг. Сколько мешков потребовалось?

4.Задача

Длина прямоугольника 7 см, а ширина 2 см меньше. Найди его периметр и площадь.

5. Сравни, поставь знаки > <, =

300г… 1 кг               6м 3дм…66дм

2 сут. …40 ч.             6дм²…600 см²

3дм 2 см…320 см     100 мин … 1 ч

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector