Деление с остатком — алгоритмы и примеры решения для 5 класса
Содержание:
- Примеры на деление четырехзначного числа на двузначное с остатком с ответами:
- Деление с остатком целых отрицательных чисел
- Как научиться делить столбиком
- В чем состоит смысл деления с остатком?
- Как записывать деление в столбик
- Правила деления в столбик
- Решение примеров
- Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями
- Как проводится
- Признаки делимости
- Связи между делимым, делителем, неполным частным и остатком
- Зависимость между данными и искомыми деления
- Связь деления с умножением, сложением и вычитанием
- Решение задач на деление с остатком
- Заключение
Примеры на деление четырехзначного числа на двузначное с остатком с ответами:
Те же самые примеры на деление одного числа на другое с остатком, что приведены выше, но с ответами для быстрой проверки решений.
1225 : 27 = 45 остаток 103458 : 81 = 42 остаток 563414 : 10 = 341 остаток 42040 : 93 = 21 остаток 874123 : 26 = 158 остаток 153502 : 71 = 49 остаток 238574 : 47 = 182 остаток 203424 : 35 = 97 остаток 299353 : 71 = 131 остаток 521667 : 34 = 49 остаток 17212 : 92 = 78 остаток 366900 : 67 = 102 остаток 668584 : 17 = 504 остаток 169319 : 34 = 274 остаток 32280 : 44 = 51 остаток 366240 : 22 = 283 остаток 142857 : 86 = 33 остаток 192275 : 18 = 126 остаток 78962 : 88 = 101 остаток 748013 : 29 = 276 остаток 95916 : 25 = 236 остаток 165274 : 88 = 59 остаток 828198 : 53 = 154 остаток 366189 : 53 = 116 остаток 412746 : 25 = 109 остаток 21 | 7610 : 74 = 102 остаток 621453 : 53 = 27 остаток 226479 : 12 = 539 остаток 119890 : 13 = 760 остаток 107895 : 77 = 102 остаток 414662 : 82 = 56 остаток 707280 : 32 = 227 остаток 163968 : 78 = 50 остаток 685317 : 19 = 279 остаток 161370 : 58 = 23 остаток 361176 : 92 = 12 остаток 726110 : 22 = 277 остаток 161905 : 85 = 22 остаток 358818 : 43 = 205 остаток 39491 : 93 = 102 остаток 56276 : 61 = 102 остаток 549922 : 16 = 620 остаток 26072 : 62 = 97 остаток 584860 : 58 = 83 остаток 469895 : 39 = 253 остаток 283988 : 50 = 79 остаток 388166 : 63 = 129 остаток 395052 : 37 = 136 остаток 203470 : 46 = 75 остаток 208997 : 61 = 147 остаток 30 |
Сгенерировано примеров на деление четырехзначного числа на двузначное с остатком с ответами в качестве тренажера по математике: 50
Скачать |
Распечатать |
На этой странице сайта результат работы генератора случайных примеров по математике на деление четырехзначного числа на двузначное с остатком для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.
Тренировочные примеры по математике на деление четырехзначного числа на двузначное с остатком для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.
Математические примеры на деление четырехзначного числа на двузначное с остатком, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.
Задания на деление четырехзначного числа на двузначное с остатком, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.
Деление с остатком целых отрицательных чисел
Сформулируем правило деления с остатком целых отрицательных чисел:
Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле: d = a − b * c |
Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.
Алгоритм деления с остатком целых отрицательных чисел:
- найти модули делимого и делителя;
- разделить модуль делимого на модуль делителя;
- получить неполное частное и остаток;
- прибавить 1 к неполному частному;
- вычислить остаток, исходя из формулы d = a − b * c.
Пример
Найти неполное частное и остаток при делении −17 на −5.
Как решаем:
Применим алгоритм для деления с остатком.
Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.
Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.
Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим d = a − b * c = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.
Получилось, что остаток равен 3, а неполное частное равно 4.
Ответ: (−17) : (−5) = 4 (остаток 3).
Как научиться делить столбиком
Деление столбиком с остатком и без него нельзя начинать без подготовки. Сначала ребенок должен хорошо уметь и знать следующее:
- Разряды натуральных чисел (десятки, сотни, тысячи). Находить их в ряду многозначных цифр.
- Таблица умножения. Этот материал лучше выучить наизусть и постоянно повторять.
- Отнимать, складывать не только однозначные или двузначные, но и многозначные числа.
- Решать маленькие задачи на умножение, разность, сумму устно.
Отработайте все обозначенные умения до автоматизма. Затем приступайте к делению маленьких цифр на примере таблицы умножения в уме. Например, ребенок выучил, как умножать цифру 6:
6х2=12
6х3=18
6х4=24 и так далее.
Смело предлагайте такие примеры:
24:6=4
24:4=6
12:2=6
18:3=6
Через пару уроков школьник будет выполнять такие задания легко. Можно разнообразить занятия по устному счету играми на деление.
Игровые задания
Интересные математические игры на деление без остатка помогают детям закрепить навык, узнать законы работы с цифрами, освоить устный счет.
-
Головоломки на развитие внимания. Напишите в тетради 3–5 примеров на деление с ответами.
Все, кроме одного, должны быть решены неверно. Нужно быстро найти тот пример, который содержит правильный ответ. Затем исправить остальные примеры с помощью устного счета.
- Подбор примера по результату. Предлагайте малышу ответ без примера. Давайте задание придумать задачу. Например, ответ 8. Ребенок может придумать такую задачу: 48:6.
- «Идем в магазин». Расставьте на полу игрушки с карточками. На листах написаны примеры: 6:2, 18:3, 42:7, 100:50. Игрушки — это «товар» в фантазийном магазине, частное после решения примера на карточке — их цена. Чтобы узнать стоимость покупки, нужно решить задания, а потом оплатить полученный результат в кассу. Играть лучше в небольшой команде — 2–3 человека.
- «Молчуны». Ребенок получает карточки с цифрами от 1 до 100. Задавайте вопросы с примерами на деление, ученик должен отвечать без слов, показывая правильный ответ.
- Небольшие самостоятельные работы с подарком за старательность. Распечатайте карточки с примерами в количестве 5–10 штук. Укажите время на решение, например 5 минут. Поставьте перед ребенком песочные часы. После выполнения контрольной верно поощрите школьника походом в зоопарк, кино, покупкой книги, сладостей. Такой тренажёр хорошо стимулирует детей.
-
«Ищем дерево».
Нарисуйте небольшой сад с деревьями на картоне. Каждому растению дайте номер, пусть их будет 10. На листочке для ученика напишите 3 примера:
45:9 120:60 14:7
Школьник должен вычислять результат к каждому заданию, а потом складывать все числа между собой. Получится так:
45:9=5
120:60=2
14:7=2
5+2+2=9
Ребенок должен найти дерево под номером 9.
Для игры можно использовать цветные пуговицы и ставить их на занятые деревья. Развлечение подходит для командных соревнований.
После устной работы с делением натуральных чисел можно показать ребенку порядок записи примеров столбиком. Если педагогического опыта у вас нет и вы не знаете, как объяснить ребёнку процесс деления столбиком, то посмотрите видеоурок на эту тему, вспомните теорию сами.
Теперь можно приступать к объяснению сложного материала школьнику. Есть несколько методик домашнего обучения делению:
1. Мама-учитель
Родителям придется ненадолго стать педагогами. Оборудовать доску, купить мел или маркеры. Заранее вспомнить школьный материал по теме “деление уголком”. Объяснить пошагово теорию и закрепить ее на практике с помощью большого количества самостоятельных, карточек, контрольных работ.
Например, это:
Затем нужно обсуждать с малышом материал, закреплять навык на практике несколько недель.
3. Нанять репетитора
Деление (даже трёхзначных чисел на двузначные) не самая сложная тема в школьной программе. В начальных классах можно легко обойтись без платных уроков с педагогом.
Этот вариант оставим на крайний случай.
В чем состоит смысл деления с остатком?
В случае натуральных чисел деление с остатком имеет следующий смысл. Мы уже знаем, что понятие натурального числа тесно связано с количеством чего-либо. Допустим, у нас есть некое число предметов (обозначим его a), а после его деления образуется остаток, условно d. У нас остались числа b и c. Есть два основных подхода к их обозначению:
1) если b –количество элементов в каждом равном множестве, полученном после деления, то c – это количество множеств, которое у нас получилось.
2) если b – это количество множеств, то c – это число предметов в каждом из них.
Поясним нашу мысль на конкретных числах. Допустим, натуральное число 13 было разделено на 4. В итоге мы имеем два числа – 3 и 1. Мы можем рассмотреть эту ситуацию с двух сторон:
1) тринадцать предметов были сгруппированы по 4. У нас получилось 3 группы, а в исходном множестве остался всего 1 предмет;
2) тринадцать предметов разложили по 4 группам. У нас получилось, что в каждой группе по 3 предмета, а остаток равен 1.
Если натуральное число a всегда можно разделить с остатком на любое натуральное b, то можно выделить следующие ситуации:
1. A можно разделить на b без остатка, то есть все предметы можно разделить на равные множества. При этом «лишних» у нас не останется, тогда d будет равно . Получается, что деление без остатка – это частный случай деления с остатком.
2. A может быть меньше b. Тогда ни одного требуемого множества мы из него составить не можем, и число c будет равно нулю, а остаток равен a (то есть числу предметов в исходном множестве).
3. A может делиться на b с остатком. Тогдазначения a, b, c и d будут натуральными числами.
Подводим итог:
Определение 2
Результат деления натуральных чисел a и b с остатком – это два числа c и d, которые либо оба являются натуральными, либо одно из них равно нулю.
Как записывать деление в столбик
Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком.
Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:
За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:
Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:
Под делимым будут записываться промежуточные вычисления:
Полностью форма записи деления столбиком выглядит следующим образом:
Правила деления в столбик
Без остатка
Чтобы найти частное от деления одного числа на другое (с любым количеством разрядов) можно выполнить это арифметическое действие в столбик.
Рассмотрим правила деления на практическом примере для лучшего понимания. Допустим, нам нужно трехзначное число разделить на однозначное, к примеру 256 на 8. Вот, что мы делаем:
1. Пишем делимое (256), затем немного отступаем от него и в этой же строке дописываем делитель (8). Затем между этими числами дорисовываем уголок. Результат будем записывать под делителем.
2. В делимом слева направо отсчитываем минимально необходимое количество разрядов таким образом, чтобы полученное из содержащихся в них цифр новое число было больше, чем делитель. В нашем случае числа 2 недостаточно, поэтому к нему добавляем 5 и в итоге получаем 25.
Примечание: Если крайняя левая цифра делимого больше делителя, добавлять к нему цифру следующего разряда не нужно, и мы сразу приступаем к следующему шагу.
3. Определяем, сколько целых раз наш делитель содержится в полученном из цифр делимого числе (25). В нашем случае – три раза. Пишем цифру 3 в отведенном для этого месте, затем умножаем ее на делитель (3 ⋅ 8). Получившееся число (24) отнимаем из 25 и остается единица
Важно, чтобы результат вычитания (остаток) обязательно был меньше делителя, иначе мы неправильно выполнили вычисления
Примечание: Правила и примеры вычитания чисел столбиком приведены в отдельной публикации.
4. К остатку (1) добавляем следующую цифру делимого (6), чтобы получить новое число, которое снова больше, чем делитель.
Примечание: Если при добавлении следующей цифры образовавшееся новое число все еще меньше делителя, берем еще одну цифру справа (если есть такая возможность), при этом в частном пишем ноль. В противном случае, получается деление с остатком, которое мы рассмотрим далее.
5. В числе 16 содержится ровно два раза по восемь (2 ⋅ 8), следовательно, пишем 2 в частном, затем выполняем вычитание (16 – 16) и получаем остаток, равный нулю.
На этом деление столбиком числа 256 на 8 успешно выполнено, и частное равно 32.
С остатком
В целом, алгоритм действий аналогичен вышеописанному. Разница лишь в том, что при последнем вычитании остается неделимой остаток, к которому больше нечего дописывать из делимого, т.к. все его разряды уже были использованы. Остаток обычно записывается справа от результата в скобках.
Например, остаток от деления 112 на 5 равняется двум. То есть 112 : 5 = 22 (2).
Пояснение: в результате вычитания 10 из 12 получается 2, но к нему больше нечего дописать из делимого.
Решение примеров
Для того чтобы произвести деление с остатком, используется определенная запись.
Приведем примеры по математике (3 класс). Деление с остатком в столбик можно не записывать. Достаточно записи в строчку: 13:4=3 (остаток 1) или 17:5=3 (остаток 2).
Разберем все подробнее. Например, при делении 17 на три получается целое число пять, кроме того, получается остаток два. Каков порядок решения такого примера на деление с остатком? Сначала необходимо отыскать максимальное число до 17, разделить которое можно без остатка на три. Самым большим будет 15.
Далее проводится деление 15 на число три, результатом действия будет цифра пять. Теперь вычитаем из делимого число, найденное нами, то есть из 17 отнимаем 15, получаем два. Обязательным действием является сверка делителя и остатка. После проверки обязательно записывается ответ совершенного действия. 17:3=15 (остаток 2).
Если остаток будет больше делителя, действие выполнено неправильно. Именно по такому алгоритму выполняет 3 класс деление с остатком. Примеры сначала разбирает учитель на доске, затем ребятам предлагается проверка знаний путем проведения самостоятельной работы.
Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями
Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.
Пример деления на трехзначный делитель
Все они выполняются по схеме:
- Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
- Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
- Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
- Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
- Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.
Рассмотрим деление в столбик на простом примере:
Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.
Деление в столбик
- Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
- Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
- Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
- Далее под пятеркой пишем произведение 3 · 1 = 3.
- Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
- Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
- Семерку пишут под чертой значка делить после единицы. Ответ получается 17.
Далее рассмотрим пример деления трехзначных чисел:
Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.
Пример деления трехзначного числа
- Запишите делимое, делитель, как на фото выше.
- Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
- Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
- Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
- Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
- Результат 32.
Рассмотрим деление многозначного числа:
Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.
Пример деления в столбик
- Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
- Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
- Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
- Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
- Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
- Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
- Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
- Результат 7394.
Деление чисел с нулями:
Как проводится
Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.
Приведем простой пример того, как делить с остатком:
Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:
5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.
Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.
Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.
Основные этапы:
- Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
- Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 помещается, 5*2=10 помещается, 5*3=15 помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
- Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.
Обратите внимание! При делении таким образом, остаток всегда должен быть меньше делителя
Признаки делимости
Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:
- V — делимое, т. е. число, которое требуется разделить.
- T — математики называют его делителем.
- P — частное является числовым результатом, который будет получаться при делении двух величин.
Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.
Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):
- 0: операция невозможна, поскольку превращает все выражение в пустое множество.
- 1: делятся все значения.
- 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
- 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
- 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
- 5: последней цифрой является 0 или 5.
- 6: деление на составные части, т. е. на 2 и 3.
- 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
- 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
- 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.
Связи между делимым, делителем, неполным частным и остатком
Чтобы установить связи между делимым, делителем, неполным частным и остатком обратимся к следующему примеру.
Пусть мы разделили a предметов в b кучек, при этом в каждой кучке оказалось c предметов и в исходном множестве осталось d предметов, то есть, в силу смысла деления натуральных чисел с остатком имеем a:b=c (ост. d). Теперь рассмотрим возможные ситуации.
Нахождение делимого, если известен делитель, неполное частное и остаток
Если вновь объединить образовавшиеся b кучек по c предметов и добавить к ним оставшиеся d предметов, то понятно, что мы получим исходное множество, состоящее из a предметов. Описанным действиям в силу и соответствует следующее равенство c·b+d=a. А если вспомнить и , то полученное равенство можно переписать в виде a=b·c+d. То есть, делимое равно сумме двух слагаемых, первое из которых есть произведение делителя и неполного частного, а второе – остаток.
Полученное равенство вида a=b·c+d позволяет вычислять неизвестное делимое, если известен делитель, неполное частное и остаток.
Пример.
Чему равно делимое, если делитель равен 7, неполное частное равно 11, а остаток равен 2?
Решение.
В этом примере b=7, c=11 и d=2, то есть, у нас есть все данные, чтобы вычислить делимое. Его значение равно значению выражения b·c+d=7·11+2. Вспомнив порядок выполнения действий, получаем 7·11+2=77+2=79 (при возникновении затруднений с вычислениями обращайтесь к статьям умножение натуральных чисел и сложение натуральных чисел).
Ответ:
делимое равно 79.
Следует также отметить, что осуществляется проверкой справедливости полученного равенства a=b·c+d.
Нахождение остатка, если известно делимое, делитель и неполное частное
По своему смыслу остаток d – это то количество элементов, которое остается в исходном множестве после исключения из его a элементов b раз по c элементов. Следовательно, в силу смысла умножения натуральных чисел и справедливо равенство d=a−b·c. Таким образом, остаток d от деления натурального числа a на натуральное число b равен разности делимого a и произведения делителя b на неполное частное c.
Полученная связь d=a−b·c позволяет находить остаток, когда известно делимое, делитель и неполное частное. Рассмотрим решение примера.
Пример.
При делении натурального числа 67 на 15 было получено неполное частное 4, чему равен остаток?
Решение.
Здесь a=67, b=15, c=4. Остаток d мы найдем, если вычислим значение выражения a−b·c=67−15·4. Так как 15·4=60, то 67−15·4=67−60=7. Таким образом, остаток равен семи.
Ответ:
7.
Нахождение неполного частного, если известно делимое, делитель и остаток
Теперь давайте из исходного множества исключим количество элементов, равное остатку от деления. При этом в силу смысла вычитания натуральных чисел мы получим множество, состоящее из a−d элементов. Понятно, что элементы полученного множества можно разделить без остатка на b множеств, и в каждом множестве будет по c элементов. Таким образом, в силу будет справедливо равенство (a−d):b=c, которое можно переписать так c=(a−d):b.
Итак, чтобы найти неизвестное неполное частное c нужно от делимого a отнять остаток d и полученный результат разделить на делитель b.
Пример.
При делении натурального числа 221 на натуральное число 52 получился остаток 13. Чему равно неполное частное?
Решение.
Если от делимого 221 отнять остаток 13 и полученный результат разделить на делитель 52, то получится искомое неполное частное: (221−13):52=208:52=4 (здесь деление легко проводится ).
Ответ:
неполное частное равно 4.
Нахождение делителя, если известно делимое, неполное частное и остаток
Опять из исходного множества, содержащего a элементов, исключим d элементов. Понятно, что полученное множество будет содержать a−d элементов, из которых можно сформировать множества по c элементов, причем таких множеств получится b штук. Отсюда в силу смысла деления натуральных чисел будет справедливо равенство (a−d):c=b, которое можно переписать в виде b=(a−d):c.
Таким образом, чтобы вычислить неизвестный делитель b, нужно из делимого a вычесть остаток d, и полученную разность разделить на неполное частное c.
Пример.
Деление с остатком натурального числа 877 на некоторое натуральное число было получено неполное частное 35 и остаток 2. Чему был равен делитель?
Решение.
Отнимем от делимого 877 остаток 2, имеем 877−2=875. Теперь разделим полученное число 875 на известное неполное частное 35, результат нам даст искомое значение делителя. Выполним деление натуральных чисел столбиком:
Таким образом, искомый делитель равен 25.
Ответ:
25.
Список литературы.
- Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
- Математика. Любые учебники для 5 классов общеобразовательных учреждений.
Зависимость между данными и искомыми деления
При делении целых чисел мы имеем два случая: а) деление нацело, или без остатка, и б) деление с остатком.
Каждому из этих случаев соответствует особая зависимость между данными и искомыми деления.
Деление нацело или без остатка
При делении нацело
-
Частное равно делимому, разделенному на делитель.
Разделяя 42 на 7, имеем в частном 6; следовательно,
42 ÷ 7 = 6, или 6 = 42 ÷ 7
-
Делимое равно делителю, умноженному на частное.
42 = 6 × 7
-
Так как делитель и частное — два множителя, произведение которых равно делимому, то делитель равен делимому, разделенному на частное.
7 = 42 ÷ 6
Деление с остатком
При делении с остатком
-
Делимое равно произведению делителя на целое частное, сложенное с остатком.
При делении 47 на 6, имеем в целом частном 7, в остатке 5.
Делимое 47 = 6 × 7 + 5.
-
Делимое без остатка делится нацело на делитель и на целое частное.
Разность делимого без остатка равна произведению делителя на целое частное, то есть эта разность при делении на делитель дает целое частное, при делении на целое частное дает делитель.
Связь деления с умножением, сложением и вычитанием
Когда мы выполняем находим
произведение двух чисел, эти числа нам известны, а от нас требуется найти
результат действия умножение. При делении (без остатка) нам известно
произведение двух чисел, а найти нужно такое число, которое при умножении на
известное данное число дает это самое произведение.
Следовательно, действие
деление является обратным действию умножения.
Справедливо также и
обратное, что действие умножение обратно действию деления. Таким образом:
Умножение и деление – это
взаимно обратные действия.
Связь деления с
умножением, а также со сложением и вычитанием прекрасно видна, если
рассмотреть, как с помощью этих действий можно выполнить действие деление.
Рассмотрим их на примере: 345 разделить на 69.
Деление двух чисел при помощи сложения
Чтобы узнать при помощи сложения, сколько раз число 69 содержится в 345, нужно складывать последовательно 69 до тех пор, пока не получим нужного нам числа:
\(\textcolor{red} {69+69=138}\) ; \(\textcolor{red} {138+69=207}\); \(\textcolor{red} {207+69=276}\); \(\textcolor{red} {276+69=345}\).
Число 69 было слагаемым всего 5 раз, значит, \(\textcolor{red} {345\div 69=5}\) .
Деление двух чисел при помощи вычитания
Аналогично предыдущему способу, мы можем узнать, сколько раз в числе 345 содержится число 69, вычитанием. Для этого мы будем последовательно вычитать из 345 число 69 до тех пор, пока не получим нуль, и считать количество действий:
\(\textcolor{red} {345-69=276}\); \(\textcolor{red} {276-69=207}\); \(\textcolor{red} {207-69=138}\); \(\textcolor{red} {138-69=69}\); \(\textcolor{red} {69-69=0}\).
То есть, 69 от 345 можно отнять 5 раз, поэтому \(\textcolor{red} {349\div 69=5}\).
Деление двух чисел при помощи умножения
При помощи умножения узнать ответ на наш вопрос можно перебирая множитель числа 69 до тех пор, пока не получим заданное нам 345:
\(\textcolor{red} {69\cdot 2=138}\); \(\textcolor{red} {69\cdot 3=207}\); \(\textcolor{red} {69\cdot 4=276}\); \(\textcolor{red} {69\cdot 5=345}\).
Искомое частное равно полученному множителю числа 69, то есть, 5.
Но эти три способа очень
громоздки, особенно если частное представляет собой очень большое число. Их
нужно знать только для того, чтобы понимать суть действия деления, суть тех
задач, которые решаются посредством него.
Решение задач на деление с остатком
Простые задачи легко решить, если составить модель-схему условия и решения задачи на числовом луче.
Рассмотрите пример задачи:
Повар испек 17 творожных и 19 брусничных ватрушек. На тарелки положит по три штуки одного сорта. Узнайте, сколько нужно тарелок и сколько ватрушек останется.
Решение:
Ответ: для творожных ватрушек нужно 5 тарелок, две останутся; для брусничных — 5 тарелок, одна ватрушка останется.
Составьте задачу на деление с остатком, выбрав подходящее выражение:
Проверьте рассуждение. Для задачи подойдет второе выражение, а первое и последнее – не подходят, потому что это табличные случаи.
Пример задачи: На пальто пришивается 4 пуговицы. На сколько таких пальто хватит 15 пуговиц? Сколько пуговиц останется?
Ответ: пуговиц хватит на три пальто. Останется 3 пуговицы.
Придумайте задачу к схеме:
Мама купила 21 конфету и поделила по 8 штук детям. Сколько детей в семье и сколько конфет мама оставила себе?
Решение:
21 : 8 = 2 (ост.5)
Ответ: в семье двое детей. Мама оставила 5 конфет.
Умения решать задачи по математике помогают в жизни.
Подсказка: решить задачу можно округлив величины. 90 – это девять десятков, а 28 округлим до трех десятков.
Проверьте:
Ответ: Незнайка купит 3 стаканчика с мороженным. У него останется 6 рублей.
Заключение
Для того чтобы у учеников начальных классов были сформированы правильные вычислительные навыки, педагог во время проведения занятий по математике обязан уделять внимание пояснению алгоритма действий ребенка при решении заданий на деление с остатком. По новым федеральным государственным образовательным стандартам особое внимание уделяется индивидуальному подходу к обучению
Учитель должен подбирать задания для каждого ребенка с учетом его индивидуальных способностей. На каждой ступени обучения правилам деления с остатком педагог должен осуществлять промежуточный контроль. Он позволяет ему выявлять основные проблемы, возникающие с усвоением материала у каждого ученика, своевременно проводить коррекцию знаний и навыков, устранять появляющиеся проблемы, получать желаемый результат.