Как считать на абакусе (соробане)?
Содержание:
- Умножение
- Задачи по ментальной арифметике
- Польза ментальной арифметики
- История возникновения
- Как складывать на абакусе
- История абакуса
- Инструкция по применению
- Умножение и деление на абакусе
- Двузначные числа, как решать на абакусе
- Умножение и деление на счётах
- Учимся вычитать
- Что такое абакус?
- Ментальная арифметика для детей — методика получения гениев или всего лишь один из способов быстрого счёта
- Как проходит обучение
- Правила счета: подробная инструкция с примерами
- Основы ментальной арифметики
- Как выглядит абак?
Умножение
Есть несколько возможных способов умножения на соробане, мы рассмотрим один из самых распространённых.
Обратите внимание: чтобы умножать на соробане, нужно хорошо знать таблицу умножения. Также необходимо запомнить следующие термины, которые мы рассмотрим на примере a x b = c, где:
Также необходимо запомнить следующие термины, которые мы рассмотрим на примере a x b = c, где:
a — это множимое;
b — это множитель;
с — произведение.
Пример: 43 x 8 = 344.
Шаг 1
В первом столбце слева устанавливаем множитель — 8, отступаем один столбец и откладываем множимое — 43. Отступаем 2 столбца — с этого столбца начнём записывать результат.
Шаг 2
Умножаем 3 на 8. Результат 24 записываем в 7 и 8 столбцах. Завершая операцию, убираем цифру 3 с доски, сдвинув костяшки вверх.
Шаг 3
Умножьте 4 на 8. Результат 32 запишите следующим образом: 3 в 6 столбец — перед прошлым результатом, а 2 сложите с результатом в 7 столбце, то есть с 2. Три цифры в результате дают ответ — 344.
Сложнее выполнить умножение с двумя двузначными числами, рассмотрим это на следующем примере:
Пример: 35 x 18
Шаг 1
Откладываем множитель, то есть 18 с начала доски. Делаем отступ и откладываем 35.
Шаг 2
Умножаем 1 на 5, записываем результат через 2 пробела.
Шаг 3
Умножаем 8 на 5, получаем 40. 4 записываем под прошлым результатом, т.е. складываем с 5. В столбцах результата остаётся цифра 90.
Шаг 4
Умножаем 3 на 1 и записываем результат — 3 — перед предыдущими столбцами. Получается 390.
Шаг 5
Умножаем 3 на 8, результат 24 записываем под первыми двумя цифрами прошлого результата. Получаем 630.
Задачи по ментальной арифметике
Перед тем, как приступить к выполнению задач, важно понимать то, что такое ментальная арифметика для детей, обучить самому которой будет весьма проблематично. Но ничего невозможного нет
Самое главное — ответственно подойти к процессу.
Для обучения понадобится приобрести специальные счеты абакус или соробан. Как только они будут куплены, можно приступать к обучению. Методика рассчитана на обучение детей младшего и старшего дошкольного возраста. Для достижения результатов, категорически запрещено игнорировать систематические каждодневные домашние занятия. Они должны быть построены в форме урока. Специалисты рекомендуют учить детей не только ментальной математике, но и скорочтению.
Перед тем как приступить к занятиям в домашних условиях, важно иметь представление о всех нюансах ментальной математики для детей. О том, что это ответственный процесс, также забывать не стоит
Обратите внимание! Если занятия проводятся правильно, то первые результаты становятся заметны уже через 2-3 месяца. Чтобы полностью освоить технику, малышу понадобится приблизительно 2 года. Сначала дошкольник обучается действиям на сложение и вычитание чисел, а затем учится умножать и делить
Сначала дошкольник обучается действиям на сложение и вычитание чисел, а затем учится умножать и делить.
На первом занятии ребенка рекомендуется познакомить с абакусом. Малыш должен пощупать и научиться передвигать костяшки. Не лишним будет посмотреть совместно видеоурок. К сложению однозначных и двузначных чисел можно приступать только после усвоения принципа работы.
После того как ребенок освоил счеты, его необходимо ближе познакомить с основными принципами работы и переходить к простейшим примерам сложения.
Обратите внимание! Категорически запрещено торопиться. Умение формируется постепенно, поэтому надо проявить терпение по отношению к ребенку и не ждать моментальных результатов
Задача 1. Необходимо сложить 14 и 22. Для этого нужно следовать алгоритму: сначала необходимо отложить на спицах число 13 и прибавить к нему 23. В результате этого получается 36. Все математические действия должны выполняться исключительно слева направо.
Вычитать на абакусе тоже весьма просто.
Задача 2. От 8 нужно отнять 4. Для этого в верхнем блоке на первой спице опускается костяшка. В результате этого получается 5. Затем 3 бусины поднимаются в нижнем блоке и выставляется цифра 8. После этого опускаются 3 костяшки в нижнем углу и остается 5.
Следующим этапом освоения ментальной математики является умножение и деление. Этим действиям научить малыша немного сложнее, но со временем ребенок обязательно их познает.
Задачи по ментальной математике
Ментальная математика для детей является довольно новой программой, которая применяется для обучения детей устному счету. Несмотря на то, что методика появилась не очень давно, она получила огромную популярность и показала превосходные результаты. Родители единогласно сходятся во мнении, что программа не только максимально эффективна, но и полезна.
Первые успешные результаты наблюдаются уже по истечении нескольких месяцев, при условии, что занятия проводятся систематически. В результате у детей значительно улучшается память, повышается способность к сосредоточению, а мышление приобретает креативный характер. Если занятия начинают проводиться в дошкольном возрасте, ребенок успевает многому научиться и в дальнейшем чувствует превосходство в школе.
Польза ментальной арифметики
Считается, что каждое из полушарий человеческого мозга отвечает за свои направления. Так, правое из них позволяет развить творчество, образное восприятие и мышление. Левое же в ответе за логическое мышление.
Деятельность полушарий активизируется в тот момент, когда человек начинает работать руками. Если активна правая из них, то начинает работать левое полушарие. И наоборот. Человек, работающий левой рукой, способствует активизации работы правого полушария.
Задача менара — заставить весь мозг принимать участие в образовательном процессе. Как же достигнуть таких результатов? Это возможно при выполнении математических операций на абакусе обеими руками. В конечном итоге менар способствует освоению быстрого счета, а также развитию и совершенствованию аналитических навыков.
Ученые сравнили калькулятор с абакусом и пришли к однозначному выводу, что первый из них расслабляет активность мозга. Абакус же, напротив, оттачивает и тренирует полушария.
Когда следует начать изучать ментальный счет? Отзывы приверженцев данной методики утверждают, что лучше всего осваивать этот способ в возрасте от четырех до двенадцати лет. И только в некоторых случаях период может быть продлен еще на четыре года. Это время, когда происходит бурное развитие мозга. И данный факт является замечательным посылом к тому, чтобы прививать ребенку базовые навыки, проводить изучение иностранных языков, развивать мышление, осваивать игру на музыкальных инструментах и боевые искусства.
История возникновения
Методика ментального счета имеет древние корни. И это несмотря на то, что разработана она сравнительно недавно ученым из Турции Халитом Шеном. Что же он использовал для своей системы ментального счета? Абакус, который был создан в Китае еще 5 тыс. лет назад. Этот предмет представляет собой счеты, которые внесли огромный вклад в развитие всей мировой арифметики. После изобретения абакус начал свое постепенное распространение по всему миру. В 16-м веке из Китая он попал в Японию. На протяжении четырех сотен лет жители Страны восходящего солнца не только успешно использовали такие счеты, но и тщательно прорабатывали их, пытаясь усовершенствовать такой нужный для совершения арифметических действий предмет. И это им удалось. Японцы создали счеты соробан, которые и до сегодняшнего дня используются для обучения детей в начальной школе.
На протяжении всей истории развития человечества совершенствовалась математическая наука. И сегодня она может предложить нам огромное количество своих достижений. Но, несмотря на это, ученые считают, что использование абакуса приносит больше пользы в обучении детей точному счету.
Как складывать на абакусе
Итак, маленький математик с вашей помощью освоил счетный прибор счеты для ментальной арифметики, познакомился с основными принципами работы. Пора переходить к первым простейшим примерам сложения.
Скачайте задачи для домашних занятий в интернете бесплатно и решите их сами, потом предлагайте дошкольнику.
На первом уроке используйте однозначные и двузначные числа. Попробуем сложить 14 и 22. Действовать нужно по следующему алгоритму:
- Отложите на спицах первое число – 13. Согласно данному методу, для этого в ряду десятков поднимите 1 бусину на нижнем ряду; на спице, отвечающей за единицы, отложите 3 костяшки.
- Прибавляем 23. Для этого в ряду единиц добавляете 3 бусины, в ряду десятков – 2.
- Получаем 36.
Выполняйте математические действия слева направо. Для поднимания бусин пользуйтесь большим пальцем, для опускания – указательным. При нехватке костей в нижнем блоке нужно пользоваться помощью братьев из верхней части рамки, кратных 5.
Например, для выкладывания числа 80 бусин в ряду десятков не хватит, их всего 4. Для этого нужно отложить 5 десятков в верхнем блоке. Получится 50. И добавить 3 бусины на нижнем блоке — еще 30. В сумме получается 80.
Посмотрите видеоурок, в котором показаны азы сложения:
Продолжение обучения:
В этом видео разобраны более сложные примеры на сложение:
История абакуса
Что такое абакус? Это древние счеты для вычислений. Ученые считают, что первый абакус появился в третьем тысячелетии до нашей эры в Месопотамии. Сейчас на её территории находится Ирак, Сирия и части Турции и Ирана. В 5 веке до нашей эры эти счеты узнали в Древнем Риме. Но это лишь предположения. Зато есть четкие доказательства того, что в 17 веке абакус точно был в Европе: в Парижской национальной библиотеке до сих пор хранятся сами счеты абакус и его схема.
В китайских национальных книгах 2 века нашей эры говорится о счетах суаньпань. Это аналог абакуса. Именно в этой стране счёты усовершенствовали, а потом отправили в Японию. Жители страны восходящего солнца убрали одну косточку и назвали счёты по-своему – соробан. Это значит «доска для вычислений». Счёты были очень популярны, потому что тогда в Японии торговля переживала свой расцвет, и знания математики были очень нужны.
Инструкция по применению
Сегодня вовсе не обязательно посещать специальную школу для изучения устного счета на абакусе. Вместо этого можно попробовать онлайн-тренажеры с разными уровнями, предназначенные не только для начинающих, но и для продвинутых счетоводов.
Положение пальцев и простые примеры
Вне зависимости от степени сложности выбранного задания, определяющее значение будет иметь положение пальцев, для чего была разработана специальная техника, облегчающая счет. Так, в случае применения японского абакуса необходимо задействовать только два пальца: указательный и большой. Согласно старинным схемам, большой палец предназначается для того, чтобы править костяшками из нижней палубы, тогда как указательный годится для всех бусин без исключения.
Кроме того, важную роль в этом вопросе играет и характер выполняемой счетной операции, ведь если, к примеру, речь идет о вычитании шариков земного ряда, то лучше всего делать его с помощью указательного пальца при прибавлении большим. В то же время для управления костяшками из небесной планки специалисты советуют ограничиваться одним только указательным пальцем, невзирая на то, что нужно сделать — прибавить или отнять.
Разобравшись с положением пальцев и кистей в целом, можно приступать к вычислению, начиная с установки счетов на горизонтальную поверхность и перевода всех их бусин в нулевое положение. Далее можно привести несколько элементарных примеров, как считать на абакусе, выполнив сложение следующих чисел:
- «1+3». Чтобы сложить эти простейшие числа, необходимо перевести одну костяшку из земного ряда в сторону разделительной планки, а потом добавить к ней еще три бусинки, получив значение «4».
- Выполнение вычисления до пяти предполагает перенесение одной бусины в сторону разделительной планки с одновременным перемещением всех остальных костяшек в нижнее положение.
- Для получения числа «7» следует добавить еще две костяшки к разделительной планке, получив один небесный шарик, соответствующий пяти, и два земных, равных двум (5+2=7).
Сложение/вычитание и умножение/деление
Набив руку в наборе однозначных и многозначных чисел и научившись прибавлять и отнимать самые простые из них, можно смело переходить на следующий, более сложный уровень. И прежде всего речь идет о сложении и вычитании двухзначных чисел. К примеру, посчитать, сколько будет 27+43, на абакусе можно будет следующим образом:
- Прежде всего на счетах набираются оба числа с обязательным разложением их на простые составляющие (7 и 3 к единицам, 2 и 4 к десяткам).
- После этого выполняется простейшее попарное сложение цифр — 2+4 и 7+3.
- Из-за того что при сложении единиц получается 10, необходимо привести все костяшки в этом ряду в нулевое положение, добавив единицу к ряду десяток, получив в итоге 30.
- Так как добавляются не только единицы, но и десятки, то к полученным 30 необходимо прибавить еще 4, в результате чего должно остаться 7 десятков, разложенных на одну небесную пятерку и 2 земные единички из ряда десятых.
Вычитание выполняется на основе аналогичного алгоритма, но только в обратную сторону, предполагающую отнимание десятых и добавление единиц, если таковые будут образовываться в остатке. Что касается умножения, то с ним также не должно возникнуть никаких трудностей, нужно только освоить таблицу умножения от 0 до 10.
Само решение выполняется в два этапа, которые предполагают разложение каждого числа на десятки и единицы с последующим их перемножением. Если же для расчета используются трехзначные и более сложные числа, следует придерживаться одного простого правила, согласно которому сначала перемножаются десятки, потом единицы с десятками и наоборот, а после сами единицы. Проще говоря, счет ведется от большего к меньшему с последовательным их набором на абакусе. По аналогии выполняется и деление, главное, не сбиться и соблюдать очередность выполняемых операций.
Умножение и деление на абакусе
Изучение основ умножения на этом приспособлении потребует больше усердия, нежели решение примеров на сложение и вычитание. Начинают умножать с больших чисел, постепенно двигаясь к меньшим значениям.
Изначально нужно освоить технику самостоятельно и только потом в более понятной форме преподавать арифметику для детей. Чтобы новый материал легче запоминался, необходимо проводить регулярные занятия, иначе полученный прогресс будет упущен, и придется начинать все сначала.
После тщательного изучения умножения можно переходить к делению. Принципы работы здесь такие:
- Расчетное поле мысленно делят пополам по ширине. Одна часть для — знаменателя, другая — для ответа.
- Цифра для деления находится справа, соответственно, ответ — слева.
- Итог деления пишется в крайнем столбце.
Первое время результат деления можно проверять с помощью калькулятора.
Двузначные числа, как решать на абакусе
Двузначные числа необходимо решать на абакусе двумя руками. Объясните ученикам, что так они будут решать примеры быстрее. Рабочие пальцы правой руки большой и указательный, левой руки — средний и указательный, так как ассиметричное решение развивает межполушарные связи.
Концепция старших товарищей и составных формул (микс формулы)
Старшие товарищи
Рисуем на доске «дом числа 10» и просим детей перерисовать дом с надписью: «Старшие товарищи. Состав числа 10».
Объяснение: «Дети, это дом, в котором живет число „10“. На каждом этаже живут старшие товарищи. Как вы думаете почему именно эти циферки? Ну давайте я вам объясню, это не простые циферки. Это старшие товарищи. Они будут помогать друг другу в сложных ситуациях как товарищи. Например, у числа „9“ старший товарищ число „1“, у цифры „8“ младший товарищ „2“, и т. д. Сумма старших товарищей равна десяти. Смотрите сами: 9+1=10, 8+2=10 и т.д.».
Нужно чтобы каждый ребенок запомнил старших товарищей. Спросите каждого: «кто младший товарищ числа „7“, кто младший товарищ числа „6“ и т.д.».
Умножение и деление на счётах
В ютубе имеется большое количество обучающих видео роликов по умножению и делению на счётах. Рекомендуется просмотреть их перед тем, как обучаться по книге.
Ментальный счет можно тренировать параллельно обучаясь умножению и делению, либо после того как обучились этому. На усмотрение преподавателя в зависимости от успеваемости группы. Нормативы тоже зависят от успеваемости учеников. В некоторых учебниках уже указаны нормативы.
Умножение на счётах основано на обычном умножении 7чисел. Ученики должны знать таблицу умножения наизусть перед тем, как начнут решать примеры на умножение на счётах.
Умножение однозначных (1дх1д) — это обычная таблица Пифагора. 2дх1д
1 пример
23×4. Точка отсчета находится примерно в середине абакуса. Имеем три цифры: 2,3,4, значит ответ откладываем на трех спицах. Откладываем слева направо.
1 действие — десяток первого множителя умножаем на другой множитель (на единицу):
2×4=08.
Правило: ЕСЛИ ОТВЕТ ОДНОЗНАЧНЫЙ, ТО ВОСПРИНИМАЕМ ЕГО КАК ДВУЗНАЧНОЕ, МЕНТАЛЬНО ПРЕДСТАВЛЯЯ ПЕРЕД НИМ 0.
На спицах слева направо откладываем 08.
Если результат откладываем на 3 спицах, в умножении откладывать нужно слева направо, значит 08 откладываем на первой и второй спицах слева, то есть на сотнях и десятках.
2 действие — единицу первого множителя умножаем на другой множитель (на единицу).
3×4=12
Откладываем 12, на второй и третьей спицах слева (на десятках и единицах).
Ответ: 92.
2 пример
65×7
— 6×7=42, откладываем на сотнях и десятках.
— 5×7=35, откладываем на десятках и сотнях.
Ответ: 455.
2дх2д
73×45
В примере 4 цифры, значит откладываем решение на 4 спицах.
— 7×4= 28 умножаем десяток одного множителя на десяток другого множителя и откладываем на 1 и 2 спицах слева направо, то есть на тысячах и сотнях.
— 7×5=35 умножаем десяток первого множителя на единицу второго множителя и откладываем на 2 и 3 спицах, то есть на сотнях и десятках.
— 3×4=12 умножаем единицу первого множителя на десяток второго множителя и откладываем на 2 и 3 спицах, то есть на сотнях и десятках.
— 3×5=15 умножаем единицу первого множителя на единицу другого множителя и откладываем на 3 и 4 спицах, то есть на десятках и единицах..
Ответ: 3285.
3дх2д
926×52
В примере 5 цифр, значит откладываем результат на 5 спицах слева направо.
— 9×5=45 умножаем сотню первого множителя на десяток второго множителя и откладываем на 1 и 2 спицах слева направо, то есть на десятках тысячах и на тысячах.
— 9×2=18 умножаем сотню первого множителя на единицу второго множителя и откладываем на 2 и 3 спицах слева направо, то есть на тысячах и на сотнях.
— 2×5=10 умножаем десяток первого множителя на десяток второго множителя и откладываем на 2 и 3 спицах слева направо, то есть на тысячах и сотнях.
— 2×2=4 умножаем десяток первого множителя на единицу второго множителя и откладываем на 3 и 4 спицах слева направо, то есть на сотнях и десятках.
— 6×5=30 умножаем единицу первого множителя на десяток второго множителя и откладываем на 3 и 4 спицах слева направо, то есть на сотнях и десятках.
— 6×2=12 умножаем единицу первого множителя на единицу второго множителя и откладываем на 4 и 5 спицах слева направо, то есть на десятках и единицах.
Решение более сложных примеров на умножение на счётах является аналогичным. Чтобы запомнить алгоритм откладывания ответа на абакусе, нужна практика и скорость.
Учимся вычитать
Отнимать цифры на абакусе тоже несложно. Перед первым уроком посмотрите видео базового курса. Вводное занятие в домашних условиях начните с теории, прочитав соответствующие книги (перечень учебников будет представлен ниже). Объясните ребенку следующие аспекты:
-
Начинать вычитать нужно с большего разряда.
В трехзначных цифрах – с сотен, в двузначных – с десятков.
- Не нужно забывать пользоваться верхним блоком, костяшками-братьями.
Приведем несколько примеров на вычитание. Для малышей тренировка должна начинаться с однозначных цифр.
От 8 отнимем 3
- На первой спице в верхнем блоке опустите костяшку, получится 5.
- В нижнем поднимите еще 3 бусины. Так выставляется цифра 8.
- Теперь отнимаем 3.
- Опускаем 3 костяшки в нижнем ряду.
- Остается 5.
От 13 отнимаем 4
- Выставляем на абакусе число 13.
- В ряду десятков поднимайте 1 косточку. Это 10.
- В ряду единиц — 3 бусины. Равно 13.
- Отнимаем 4.
- В ряду единиц бусин для вычитания не хватает, поэтому опускаем костяшку из блока десятков.
- Затем поднимаем бусину верхнего блока, кратного 5, в ряду единиц и 1 бусину в нижнем ярусе.
- Ответ – 9.
Примеры расчета представлены на схемах. Их можно распечатать, иметь под рукой во время занятий. Спустя пару уроков выкладывание цифр на счетной доске станет автоматическим. Малышу нужно впервые предложить представлять ментальную карту для решения простых задач. Опорные таблицы для устного счета без абакуса понадобятся только в первое время.
Что такое абакус?
Абакус — это особые счеты, они облегчают обучение арифметике на начальном этапе. Выглядят они как привычный для нас прибор, только в перевернутом виде и с меньшим количеством бусин. В переводе на японский язык «абакус» звучит как «соробан». Он состоит из деревянной рамки и спиц с надетыми на них бусинами.
Счетная часть разделена на две, одну большего и другую, соответственно, меньшего размера:
- Верхний блок состоит из одной костяшки на каждой спице, называют их «братья». Каждый ряд равен 5.
- Нижний блок состоит из четырех костяшек на каждой спице, называют их «друзья». Каждый ряд равен 1 и имеет разряд цифр.
Начинают отсчет на абакусе в ментальной арифметике справа налево: единицы, десятки, сотни, тысячи и так далее. Во время счета разделительная полоса располагается сверху, горизонтально. Чтобы указать число, бусины поднимают вверх, если все костяшки находятся внизу, это число – 0.
Разобраться в этом приборе тяжело только теоретически, на практике же достаточно выставить несколько чисел, чтобы понять принцип работы с ним.
Ментальная арифметика для детей — методика получения гениев или всего лишь один из способов быстрого счёта
В настоящее время в мире насчитывается более 5 тысяч школ, в которых обучаются ментальной арифметике более 5 млн детей. Существует несколько десятков разновидностей этой методики. Только в России учебные центры работают по десяти популярным франшизам:
- Абакус;
- Smartykids;
- Менар;
- UCMAS;
- GENIUS;
- ALOHA;
- Unicum kids;
- Abacumo;
- Соробан;
- Пифагорка.
Единый принципиальный подход заключается в том, что обучение ведётся на специальных механических счётах абак (абакус). В Китае их разновидность называется суньпань, в Японии — соробан. В общем случае абак — это семейство счётных досок, которые применялись для арифметических вычислений ещё до нашей эры в древних культурах Европы и Азии. Соробан представляет собой совокупность вертикальных спиц с нанизанными на них камнями. Одним из примеров абака являются русские счёты.
Счёты соробан состоят из нечётного количества вертикальных спиц с нанизанными на них костяшками
Обучаясь ментальной арифметике, дети сначала учатся считать на абаке, механически передвигая камни руками, затем стараются выполнять математические операции в уме, мысленно представляя свои действия со счётами. В конце концов, дети становятся способны выполнять следующие операции в уме быстрее, чем на калькуляторе:
- вычитать, умножать, делить шестизначные числа;
- извлекать корень;
- находить проценты.
Согласно рекомендациям специалистов по ментальной арифметике, лучше всего даётся обучение детям в возрасте от 4 до 14 лет. Причём если обычная программа обучения математическим вычислениям предполагает, что дети после первого класса должны уметь складывать и вычитать в пределах двадцати, а после второго класса в пределах ста, то дети, освоившие ментальную арифметику, могут уже в возрасте 5–6 лет спокойно оперировать трёхзначными числами.
Стандартный курс ментальной арифметики рассчитан на два года. Дети должны заниматься в классе раз в неделю. Занятие длится 1–2 часа. Но залогом успеха является ежедневное выполнение домашних заданий, на которые затрачивается от 10 до 20 минут.
Отличие изучения классической арифметики от ментальной в том, что в первом случае основой являются слуховые и визуальные ощущения, а во втором добавляются зрительные образы и тактильные ощущения. Математические операции на счётах на начальном этапе осуществляются перемещением косточек на спицах с помощью обеих рук одновременно.
Ментальной арифметикой дети занимаются в специальных классах раз в неделю в течение двух лет
Аргументы в пользу этих развивающих занятий для ребёнка
Именно развитие моторики обеих рук и зрительной памяти позволяет сторонникам ментальной арифметики говорить, что при вычислениях по данному методу оказываются задействованными оба полушария головного мозга. Поэтому считается, что такие занятия развивают:
- воображение;
- память;
- логическое мышление;
- концентрацию внимания;
- умение абстрагироваться.
В подтверждение этого дети, прошедшие полное обучение, могут одновременно производить сложные вычисления, слушать аудиокниги или играть на музыкальных инструментах.
В интернете можно обнаружить краткое описание исследований учёных из Мадрасского университета в Индии. В исследованиях принимали участие две группы детей по 160 человек в каждой. Дети, которые изучали ментальную арифметику, лучше запоминали числа и концентрировались на заданиях, были более креативными.
Доктор социальных и экономических наук Максим Белицкий считает, что занятия ментальной арифметикой в будущем могут пригодиться руководителям бизнеса любого уровня, так как им приходится оперировать большими массивами чисел.
По ментальной арифметике проводятся чемпионаты мира, в которых участвуют сотни детей
Аргументы против
Правда, бо́льшая часть педагогов и учёных относятся довольно настороженно к ментальной арифметике. Например, преподаватели математики Леонид Звавич и Александр Шевкин напоминают, что в мире существует масса других систем быстрого устного счёта. Также российских педагогов настораживает агрессивное продвижение ментальной арифметики в качестве бизнес-модели.
Американские учёные изучали эффективность этой методики на учениках начальной школы. Каких-либо преимуществ перед другими методиками не было выявлено. Скептики приводят в свою пользу и другие аргументы:
- нет необходимости в длительных занятиях ментальной арифметикой, так как в решении стандартных школьных задач на логику этот метод не помощник;
- развивается только навык устного счёта, а другие математические способности атрофируются;
- из-за шаблонного подхода утрачивается способность к поиску оптимального метода решения той или иной математической задачи.
Как проходит обучение
Обучение детей на счётах Абакус
Вопреки мнению некоторых специалистов, утверждающих, что счёты или линейка Абакус доступна только в возрасте от 5 до 11 лет, обучиться ментально считать можно даже в престарелом возрасте. Указанные возрастные ограничения являются оптимальными и именно в этот период приносят больше пользы не только в изучении математики. Начинать обучение раньше тоже не запрещается, а уж взрослому человеку освоить Абакус вообще не представляет никакой сложности. Другое дело, что менталитет и характер уже сформировался и кроме как быстро складывать и вычитать 40-летний человек больше ничему не научится.
С детьми другая история. На первых уроках они осваивают счёт непосредственно на самих счётах, перебирая костяшки пальчиками, что само по себе уже очень полезно. Как уже отмечалось, развивается мелкая моторика, полезная не только для суставов, но и речевых центров мозга
Мозг стимулируется, плюс его заставляют решать простенькие примеры, что тоже развивает внимание и память. Занятия обычно проводятся в игровой форме, чтобы не просто заинтересовать малыша, но и показать ему, что математика может быть абсолютно не скучной
На втором этапе, когда ребёнок уже достаточно хорошо справляется с заданиями посчитать, сколько будет 234 прибавить 543 или из 421 вычесть 237 при помощи счётов, начинают делать упор на воображение. Малыш должен в уме представить счёты Абакус и мысленно передвигать костяшки. Дети уже привыкли делать это при помощи пальчиков и в большинстве случаев продолжают ими двигать в воздухе. Ни в коем случае нельзя заставлять их перестать это делать, а тем более убирать руки в карманы или за спину. Никакого вреда в этих непонятных постороннему человеку движениях нет, ребёнку так просто привычнее.
Обычно осваивается три математических действия: сложение, вычитание и умножение.
Может возникнуть вопрос: а как потом в школе учить таблицу умножения и не становится ли это требование учителей бесполезным? Абсолютно нет. Счёты Абакус учат оперировать многозначными числами, а сколько будет пятью пять или семью девять надо просто помнить. Как говориться одно другому не только не мешает, но дополняет.
В хороших центрах, где работают опытные и квалифицированные педагоги, программа обучения ментальной арифметике корректируется, в зависимости от индивидуальных качеств ребёнка.
Правила счета: подробная инструкция с примерами
Для выполнения расчетов на абакусе необходимо запомнить правила:
- каждая косточка равна единице, а стержни обозначают разряд числа, первая правая спица – это наименьшее десятичное значение;
- костяшки под разграничителем – 1, 2, 3, 4, учитывается то число, сколько их поднято;
- косточка над планкой – это 5, если она опущена, число больше этого значения, поднята – меньше;
- если элемент 5 опущен, то прибавляется число поднятых под ним костяшек.
Механизм сложения
Для сложения сначала на абакусе набирают одно число, к нему на соответствующих стержнях добавляют второе. Если на спице получается более 9 костяшек, то добавляют один элемент на соседний стержень.
Решите: 33 + 14
Сначала отложите первое число: поднимите по 3 элемента на правых спицах. К 3 десяткам прибавьте еще 1, получите 4. Отложенные единицы дополните 4 косточками. Т.к. такого количества элементов снизу нет, сначала прибавьте 5, опустив верхнюю костяшку, потом отнимите 1, получите 7 единиц. Результат сложения – 47.
Вычитание
При выполнении операции из одного числа убирают соответствующее количество элементов на каждой спице. Первым набирают большее число.
Решите: 92 – 67
Отложите первое число: 2 косточки на крайней правой дорожке, на следующей – 4 снизу и 1 сверху. Вычтите десятки, для этого уберите по одной верхнюю и нижнюю косточки. Теперь вычтите единицы. Т.к. из 2 нельзя отнять 7, “займите” в десятках – уберите 1 костяшку на втором стержне, получится 5. Останется 2 десятка и 5 единиц (1 элемент сверху на первом ряду и два внизу на втором). Ответ – 25.
Умножение
Процесс заключается в перекрестном перемножении колонок. При этом соблюдают последовательность: сначала десятки, потом единицы. Для выполнения этого арифметического действия на абакусе требуется знание таблицы умножения.
Решите: 13 x 3
Сначала выполните действия:
10 х 3 = 30
3 х 3 = 9
Отложите на абакусе число 30, затем прибавьте результат второго действия. Сложение осуществляется по правилам, описанным выше. Итог: 30 + 9 = 39
Деление
Процедура аналогична умножению. Мысленно разделяют абакус на две части: поля для числителя и ответа. Делят сначала десятки, потом единицы и откладывают результаты в левой части инструмента.
Решите 62 : 2
В правой части косточками выложите первой число – 62, затем выполните действия:
60 : 2 = 30
2 : 2 = 1
Результаты выложите в левую часть: 3 элемента в крайнем ряду и 1 – в следующем. Полученный ответ – 31.
Основы ментальной арифметики
Как выглядят счеты абакус и из чего состоят вы уже знаете. Сейчас нужно понять, как набирать числа.
Располагаем соробан как на рисунке выше. Перед нами столбики, у стандартного соробана их 13. Мы будем использовать абакус с девятью столбиками (такой же как в приложении Simple Soroban). Начиная с крайне правого столбика, в этом столбце единицы. Т. е. здесь можно составить цифру от 0 до 9. Следующий столбец — это десятки, здесь числа от 10 до 90. В последующих соответственно сотни, тысячи и т. д. На верху соробана размещено по одной бусине, в соответствии со своим столбцом они обозначают число кратное пяти, т. е. в первом столбце это 5, во втором 50, в третьем 500 и так далее. Чтобы нам показать цифру пять, нужно опустить верхнюю бусину вниз, это будет пять. В исходном положении, когда верхние бусины в верху, а нижние внизу это ноль. Чтобы больше было понятно разберем несколько цифр:
- Чтобы составить цифру 7 нужно опустить верхнюю бусину в первом столбце, это будет 5 и поднять две бусины с низу, т.е. мы к 5 прибавили 2 получилось 7.
- Цифра 9 это опущенная верхняя бусина и 4 нижние бусины, поднятые вверх до разделительной планки.
Как только научились быстро набирать единицы, переходим к двухзначным числам, т.е. к десяткам.
Набираем число 73, для этого опускаем верхнюю бусину из второго столбика, это получилось 50, поднимаем еще две нижние бусины из этого же столбца с десятками, получилось 70. В первом столбце поднимаем три нижних бусины, и в итоге получаем 73.
Несколько раз потренируетесь и все будет понятно, потом переходите к сотням и так далее.
Все передвижения бусин нужно делать определенными руками и не менять последовательность. В столбце единиц мы все делаем правой рукой, при этом поднимаем бусины большим пальцем, а опускаем указательным. Например, когда мы хотим составить цифру 5 нужно указательным пальцем правой руки опустить верхнюю бусину. Если нужно составить цифру 2 нужно большим пальцем правой руки поднять две бусины из первого столбца. Запоминаем правило вверх это большой палец, вниз указательный. В столбце с десятками все тоже самое только левой рукой. Если смотрели видео как дети считаю, можно было заметит, как они крутят пальцами. Так они представляют, как передвигают бусины на счетах и тем самым производят у себя в голове, подсчет на воображаемом соробане.
Так как вся суть метода сводится к тому чтобы все вычисления происходили в уме и без каких-либо вспомогательных инструментов, нужно научится запоминать цифры и комбинации из бусин. Для этого нам понадобятся вспомогательные карточки, которые можно сделать самим. На одной стороне пишем цифру, а на другой ее графическое обозначение в виде фрагмента счет. Пример на фото ниже.
После того как научились пользоваться карточками и быстро называть цифры расположенные на них, переходим к простым арифметическим вычислениям, первое что мы разберем это сложение.
Как выглядит абак?
Специальные счеты, используемые в системе ментального счета абакусе, называются абак, линейка или также абакус. Они имеют классический вид:
Это рамка со спицами, на которые надеты костяшки, по пять штук на каждой. Количество спиц на разных абакусах отличается, а вот костяшек на каждой из них пять, кроме того, одну костяшку на каждой спице отделяет поперечная планка.
Считающий в воображении сам рассчитывает название каждой спицы, на рисунке выше подписано распределение без десятичных знаков, но если они нужны, то первые левые спицы отводятся под них, а уже потом начинаются единицы. (Абакус и абакус с десятичными знаками)